
www.umbc.edu

CMSC201
 Computer Science I for Majors

Lecture 23 – Algorithms and Analysis

Prof. Katherine Gibson

Based on slides from previous iterations of the course

www.umbc.edu

Last Class We Covered

• Tuples

• Dictionaries

– Creating

– Accessing

– Manipulating

• Dictionaries vs Lists

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Review: Tuples

• Create five tuples about you

– (e.g., your major is CMSC, your age is 19)

• Create a tuple with all of the courses you’re
taking this semester

• Create a tuple with a single element

• Create an empty tuple

• Create a tuple by casting a list

4

www.umbc.edu

Review: Dictionaries

• Create a dictionary that contains four different
(key, value) pairs, similar to “a is for apple”

– Add one additional (key, value) pair

– Update one of your (key, value) pairs

– Remove one of your (key, value) pairs

• Why must dictionary keys be unique?

• Do values need to be unique?

 5

www.umbc.edu

Review: Matching Symbols

• Match the following data types to the symbols
needed to create them (may be more than one)

6

String

List

Dictionary

Tuple

" "

()

{ }

[]

' '

www.umbc.edu

Review: Matching Symbols

• Match the following data types to the symbols
needed to create them (may be more than one)

7

String

List

Dictionary

Tuple

" "

()

{ }

[]

' '

www.umbc.edu

Review: Mutability

• Which of the following are mutable data types?

8

String

Boolean

List

Integer

Float

Dictionary

Tuple

???

???

???

???

???

???

???

www.umbc.edu

Review: Mutability

• Which of the following are mutable data types?

9

String

Boolean

List

Integer

Float

Dictionary

Tuple

???

???

???

???

???

???

???

Immutable

Immutable

Mutable

Immutable

Immutable

Mutable

Immutable

www.umbc.edu

Review: Implementation

• You are given a dictionary of the NATO phonetic
alphabet, in the form:
alpha = {"A" : "Alpha", "B" : "Bravo",

"C" : "Charlie", ... etc.}

• Write a function to convert a string from the
user into its phonetic code words

– You need only handle letters (upper and lowercase)

10

www.umbc.edu

Review: Implementation Example

• Here is an example of how it should work:
Please enter a word: EXAMPLE

The word "EXAMPLE" becomes

"Echo X-ray Alpha Mike Papa Lima Echo"

Please enter a word: dogmeat

The word "dogmeat" becomes

"Delta Oscar Golf Mike Echo Alpha Tango"

11

www.umbc.edu

Any Questions about the
Material we Just Reviewed?

www.umbc.edu

Today’s Objectives

• To learn more about searching algorithms

– Linear search

– Binary search

• To understand why certain algorithms are
“better” than others

• To learn about asymptotic performance

– To examine how fast an algorithm “runs”

13

www.umbc.edu

Search

www.umbc.edu

Searching

• Sometimes, we use the location of a piece of
information in a list to store information

• If I have the list [4, 5, 2, 3], there may
be some significance to this order

– That means sometimes we want to find where in
the list something is!

15

www.umbc.edu

Exercise: Search

• Write a function that takes a list and a variable
and returns the first location of the variable in
the list

– If it’s not found, return -1

def find(myList, myVar):

16

www.umbc.edu

Exercise Solution

def find(myList, myVar):

 for i in range(0, len(myList)):

 if myList[i] == myVar:

 return i

 # we didn't find the variable

 return -1

17

www.umbc.edu

Linear Search

• This is called linear search!

• It’s a pretty common, simple operation

• It’s especially useful when our information
isn’t in a sorted order

18

www.umbc.edu

Searching Sorted Information

• Now, imagine we’re looking for information in
something sorted, like a phone book

• We know someone’s name, and want to find
their entry in the book (just like we knew the
variable we were trying to locate earlier)

• What is a good algorithm for locating their
phone number? Think about how you would
do this.

19

www.umbc.edu

Algorithm in English

• Open the book midway through.
– If the person’s name is on the page you opened to

• You’re done!

– If the person’s name is after the page you opened to
• Tear the book in half, throw the first half away and repeat

this process on the second half

– If the person’s name is before the page you opened to
• Tear the book in half, throw the second half away and repeat

this process on the first half

• This is very hard on phone books, but you’ll find the name!

20

www.umbc.edu

Binary Search

www.umbc.edu

Binary Search

• We can use this to search sorted lists!

• To make our problem slightly easier, let’s make
it the problem of “checking to see if
something is in a sorted list”

– For purposes of our example, if there’s no
“middle” of the list, we’ll just look at the lower of
the two possible indices

– So if the list has 11 elements, the fifth one would
be our middle

22

www.umbc.edu

Binary Search

• Binary search is a problem that can be broken
down into

– Something simple (breaking a list in half)

– A smaller version of the original problem
(searching that half of the list)

• That means we can use ...

23

recursion!

www.umbc.edu

Exercise: Recursive Binary Search

• Write a recursive binary search!

• Remember to ask yourself:

– What is our base case(s)?

– What is the recursive step?

24

www.umbc.edu

Exercise: Recursive Binary Search

• Write a recursive binary search!
• Remember to ask yourself:

– What is our base case(s)?
– What is the recursive step?

def binarySearch(myList, item):

• A hint: in order to get the number at the
middle of the list, use this line:
 myList[len(myList) // 2]

 25

www.umbc.edu

Exercise Solution
def binarySearch(myList, item):

 if(len(myList) == 0):

 return False

 middle = len(myList) // 2

 if(myList[middle] == item):

 return True

 elif(myList[middle] < item):

 return binarySearch(myList[middle+1:], item)

 else:

 return binarySearch(myList[:middle], item)

26

www.umbc.edu

Algorithm Run Time

www.umbc.edu

Run Time for Search

• Say we have a list that does not contain what
we’re looking for.

• How many things in the list does linear search
have to look at for it to figure out the item’s
not there for a list of 8 things?

• 16 things?

• 32 things?

28

www.umbc.edu

Run Time for Search

• Say we have a list that does not contain what
we’re looking for.

• What about for binary search?

– How many things does it have to look at to figure
out the item’s not there for a list of 8 things?

– 16 things?

– 32 things?

• Notice anything different?

 29

www.umbc.edu

Different Run Times

• These algorithms scale differently!

– Linear search does work equal to the number of
items in the list

– Binary search does work equal to the log2 of the
numbers in the list!

• A log2(x) is basically asking “2 to what power
equals x?”

– This is the same as saying, “how many times must we
divide x in half before we hit 1?”

30

www.umbc.edu

Different Run Times

• As our list gets bigger and bigger, which of the
search algorithms is faster?

– Linear or binary search?

• How much faster is binary search?

31

www.umbc.edu

Another Example

www.umbc.edu

Sum of All Products

• Say we have a list, and we want find the sum
of everything in that list multiplied by
everything else in that list
– So if the list is [1, 2, 3], we want to find the value of:

– 1*1 + 1*2 + 1*3 + 2*1 + 2*2 + 2*3 + 3*1

+ 3*2 + 3*3

• As an exercise, try writing this function!
def sumOfAllProducts(myList):

33

www.umbc.edu

Exercise Solution

def sumOfAllProducts(myList):

 result = 0

 for item in myList:

 for item2 in myList:

 result += item * item2

 return result

34

www.umbc.edu

Run Time for Sum of All Products

• How many multiplications does this have to
do for a list of 8 things?

• For 8 things, it does 64 multiplications

– 16 things?

• For 16 things, it does 256 multiplications

– 32 things?

• For 32 things, you do 1024 multiplications

• In general, if you give it a list of size N, you’ll
have to do N2 multiplications!

35

www.umbc.edu

Asymptotic Analysis

www.umbc.edu

Asymptotic Analysis

• For a list of size N, linear search does N operations.
So we say it is O(N) (pronounced “big Oh of n”)

• For a list of size N, binary search does lg(N)
operations, so we say it is O(lg(N))

• For a list of size N, our sum of products function does
N2 operations, which means it is O(N2)

• The function in the parentheses indicates how fast
the algorithm scales

37

www.umbc.edu

Example

• What is the big O of the following, given a list
of size N:

for i in myList:

 for j in myList:

 for k in myList:

 print(i*j*k)

• This will be O(N3)

38

www.umbc.edu

Any Other Questions?

www.umbc.edu

General Announcements

• Lab 12 this week – last lab of the semester!

• Project 2 is out

– Due by Tuesday, December 8th at 8:59:59 PM

– Do NOT procrastinate!

• Next Class: Sorting

40

www.umbc.edu

Announcements: Final Exam

• Final Exam will held be on Friday,
December 11th from 3:30 to 5:30 PM

• Being held in three separate rooms
• Section 1 (Gibson, MW @ 1) – CHEM 030

• Section 7 (Dixon, TR @ 5:30) – CHEM 030

• Section 13 (Dixon, TR @ 10) – CHEM 030

• Section 19 (Morawski, MW @ 4) – PAHB 132

• Section 25 (Gibson, TR @ 4) – PHYS 101

• Make sure you go to the correct room!
41

www.umbc.edu

Announcements: Surveys

• Next class, we will be doing the in-class SCEQ
(Student Course Evaluation Questionnaire)

– This is an important metric for assessment

• The second survey will be released and
announced on Blackboard shortly

– This is 1% of your grade, and is your chance to give
feedback on your experience with the course

42

